Open Source Computational Economics The State of the Art

Sebastian Benthall

Econ-ARK

PyData NYC, Nov 2023

Sebastian Benthall (Econ-ARK) Open Source Computational Economi PyData NYC 2023 1/26

A 3 >

2 Deep Learning for Economics

Sebastian Benthall (Econ-ARK) Open Source Computational Economi PyData NYC 2023 2/26

프 🖌 🔺 프 🕨

- 3

DYNARE

DYNARE: Software tools for solving Representative Agent models.

- Began by Michel Juillard in 1994
- Dynamic Stochastic General Equilbrium (DSGE) models
 - representative agents
 - complete markets
- A domain specific language (DSL)
 - Pre-processor in C++
 - Models portable to MATLAB, Scilib, GNU Octave, now Julia
 - Became open source in the 2000s.

(4) E (4) E (4)

Changing timess

- Great Financial Crisis of 2008 throws doubt on DSGE and RA paradigm.
 - Heterogeneous agents
 - Incomplete Markets
 - Bounded rationality
- New software paradigms
 - New programming languages and optimizations: faster Python, Julia, GPU programming
 - New open source development workflows
 - New computational science tools: Jupyter, etc.

3 1 4 3 1

QuantEcon

- Thomas Sargent (Nobel-prize winner!) and John Stachurski, and others
- Lecture notes in computational notebooks
- Libraries of basic building-blocks used in repeated demos
- Both Python and Julia versions (common pattern)

(人間) とうき くうり

- 34

Open Source and (Macro)-economics

From Representative to Heterogeneous Agent Modeling

- HA modeling is more expressive than RA modeling. E.g. Krusell and Smith, '98
- Effective modeling has been limited by the computational complexity of solving high-dimensional models.

(1月) (1日) (日)

Definition: Optimization Problem (time-invariant) pt. 1

An exogenous state $m_{t+1} \in \mathbb{R}^{n_m}$ following Markov process driven by i.i.d. $\epsilon_t \in \mathbb{R}^m$

$$m_{t+1} = M(m_t, \epsilon_t)$$

An endogenous state s_{t+1} driven by the exogenous state m_t and controlled by choice $x_t \in \mathbb{R}^{n_x}$ according to

$$s_{t+1} = S(m_t, s_t, x_t, m_{t+1})$$

The choice x_t satisfies the constraint in the form $x_t \in X(m_t, s_t)$.

(Maliar, Maliar, and Winant, 2021)

(4月) トイヨト イヨト

Definition: Optimization Problem (time-invariant) pt. 2

The state (m_t, s_t) and choice x_t determine the period reward $r(m_t, s_t, x_t)$.

The agent maximizes discounted lifetime reward

$$\max_{\{x_t, s_{t+1}\}_{t=0}^{\infty}} E_0\left[\sum_{t=0}^{\infty} \beta_t r(m_t, s_t, x_t)\right]$$

where $\beta \in [0, 1)$ is the discount factor and $E_0[]$ is an expectation function across future shocks $(\epsilon_1, \epsilon_2, ...)$ conditional on the initial state (m0, s0).

(Maliar, Maliar, and Winant, 2021)

(本語) (本語) (本語) (一語)

Definition: Optimal decision rule

An optimal decision rule is a function $\varphi : \mathbb{R}^{n_n} \times \mathbb{R}^{n_s} \to \mathbb{R}^{n_x}$ such that

$$\forall t, x_t = \varphi(m_t, s_t) \in X(m_t, s_t)$$

and the sequence $\{x_t, s_{t+1}\}_{t=0}^{\infty}$ maximizes the lifetime reward for any initial condition (m_0, s_0)

Definition: Parametric decision rule

A parametric decision rule is a member of a family of functions $\varphi(;\theta)$ parameterized by a real vector $\theta \in \mathbb{R}^{n_{\theta}}$ such that for each θ , we have $\varphi : \mathbb{R}^{n_m} \times \mathbb{R}^{n_s} \to \mathbb{R}^{n_x}$ and

$$\forall t, x_t = \varphi(m_t, s_t) \in X(m_t, s_t)$$

The goal is to find the parameters $\theta \in \mathbb{R}^{n_{\theta}}$ under which the parametic decision rule $\varphi(\cdot, \theta)$ best approximates the optimal decision rule φ . (Maliar, Maliar, and Winant, 2021)

3 × 4 3 ×

Grid-based Dynamic Programming Solutions Methods

Lifetime reward function implies recursive Bellman equation:

$$V(m_t, s_t) = \max_{x_t \in X(m_t, s_t)} r(m_t, s_t, x_t) + \beta_t E_{m_{t+1}} \left[V(m_{t+1}, S(m_t, s_t, x_t, m_{t+1})) \right]$$

This problem can be solved using a variety of techniques:

- Dynamic Programming
- Reinforcement Learning (not common in Economics)
- Backwards induction (when the problem is finite horizon)

(人間) とうき くうり

Value Iteration Algorithm

Set V to arbitrary value function.

- $\ \ \, \Delta \leftarrow 0.$
- **2** For each $s \in S$:
 - $V'(m_t, s_t) \leftarrow \max_{x_t \in X(m_t, s_t)} r(m_t, s_t, x_t) + \beta_t E_{m_{t+1}} \left[V(m_{t+1}, S(m_t, s_t, x_t, m_{t+1})) \right]$ • $\Delta \leftarrow \max(\Delta, V'(s) - V(s))$
- $0 V \leftarrow V'$
- If $\Delta < \varepsilon$ halt, otherwise return to step 1.

Continuous state spaces must be discretized first.

The problem becomes exponentially complex in the dimensionality of the state space! Curse of dimensionality.

Dolo

- YAML-based configuration language for models (Dolang)
- Compiles to Python and Julia
- GPU and Numba optimizations
- Many solution algorithms
- Simulates Markov Chains using transtion matrices
- Modeling limitations:
 - time invariance
 - 2 no market aggregration

1	name: Real Business Cycle
	exogenous: [e_z] states: [z, k] controls: [n, i] parameters: [Deta, sigma, eta, chi, delta, alpha, rho, zbar, sig_z]
	definitions: y[t] = cop(z[t])*k[t]^slpha*n[t]^(1.slpha) e[t] = y[t] . i[t] rk[t] = slahay(t)?k/k[t] w[t] = (1.slpha)*y[t]/n[t]
	arbitrape: chitn[t]^eta's[t]^sigma - w[t] ⊥ 0.0 <= n[t] <= inf 1 - beta'(c[t]/c[t+1])^(sigma)'(1-delta+rk[t+1]) ⊥ -inf <= i[t] <= inf
	transition: z[t] = rho*z[t-1] + e_2 k[t] = (1-deita)*k[t-1] + i[t-1]

A 3 >

Sebastian Benthall (Econ-ARK) Open Source Computational Economi PyData NYC 2023 13/26

HARK

- Part of Econ-ARK, NF sponsored project.
- Python-only
- Endogenous Gridpoints Method (EGM) and policy iteration
- Lifecycle problems (time varying optimization)
- Monte Carlo simulation
- Population mortality dynamics
- Market aggregation (e.g. Krusell-Smith models)

Deep Learning for HA Models (!)

New uses of deep learning in Economics shaking things up:

- Encoding model conditions in objective function: Maliar Maliar and Winant (2021), Azinovic, Gaegauf, Scheidegger (2022)
- Estimating models: Chen, Didisheim, and Scheidegger (2023), Chassot and Creel (2023)

Deep Learning for HA Models (!)

The overall strategy is to construct a function

$$\Xi(\theta) = E_{\omega}(\xi, \theta)$$

where $\omega = (m, s, \epsilon)$ and:

- $\Xi(\theta)$ contains all model equations by construction
- Minimizing $\Xi(\theta)$ solves the entire model, including $\varphi(\theta)$
- Ξ is an "All-in-One" (AiO) operator, meaning it takes expectation over both the sequence of future shocks $(\epsilon_0, ..., \epsilon_T)$ and initial state (m_0, s_0)

Deep Learning for HA Models (!)

Recall that dynamic programming solutions involved a grid over states, leading to the curse of dimensionality and exponential computational costs.

Instead of using a grid, MMW'21:

- Sample $\omega_{i=1}^n = (m_i, s_i, \epsilon_i)_{i=1}^n$ from the model during training.
- Compute empirical loss $\Xi^n(\theta) = \frac{1}{n} \sum_{i=1}^n \xi(\omega_i; \theta)$

The Monte Carlo simulation of $\omega_{i=1}^n$ converges on the ergodic distribution of the simulation.

This makes high-dimension problems tractable!

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Algorithm

- Initialize the algorithm:
 - construct theoretical risk $\Xi(\theta) = E_{\omega}[\xi(\omega; \theta)]$ (lifetime reward, Euler/Bellmanequations);
 - define empirical risk $\Xi^n(\theta) = \frac{1}{n} \sum_{i=1}^n \xi(\omega_i, \theta);$
 - **3** define a topology of neural network $\varphi(\cdot, \theta)$;
 - (a) fix initial vector of the coefficients θ .
- **2** Train the machine, i.e., find θ that minimizes the empirical risk $\Xi^n(\theta)$:
 - simulate the model to produce data {ω}ⁿ_{i=1} by using the decision rule φ(·, θ);
 - **2** construct the gradient $\nabla \Xi^n(\theta) = \frac{1}{n} \sum_{i=1}^n \nabla \xi(\omega_i, \theta);$
 - **③** update the coefficients $\hat{\theta} = \theta \lambda_k \nabla \Xi^n(\theta)$ and go to step 2.i;

End Step 2 if the convergence criterion $||\hat{\theta} - \theta|| < \varepsilon$

3 Assess the accuracy of constructed approximation $\varphi(\cdot, \theta)$ on a new sample.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへつ

18/26

PyData NYC 2023

(Maliar, Maliar, and Winant, 2021)

Sebastian Benthall (Econ-ARK) Open Source Computational Economi

Example Problem

A simple consumption-saving problem with borrowing constraint:

$$\max E\left[\sum_{t=0}^{\infty} \beta_t U(c_t)\right]$$
$$w_{t+1} = r(w_t - c_t) + e^{y_t}$$
$$c_t \le w_t$$
$$y_t = \sigma \epsilon_t; \epsilon \sim \mathcal{N}(0, 1)$$

One possible objective function:

$$\Xi(\theta) = E[\xi(\omega; \theta)] = E_{(y_0, w_0, \epsilon_0, \dots, \epsilon_T)} \left[\sum_{t=0}^T \beta_t u(c_t) \right]$$

Others involve Euler equations, Bellman equations, etc. (Maliar, Maliar, and Winant, 2021)

Sebastian Benthall (Econ-ARK) Open Source Computational Economi PyData NYC 2023 19 / 26

Estimation

Consider a model F such that

$$(x_t, m_{t+1}, s_{t+1}) = F(m_t, s_t, \varepsilon | p)$$

via optimal decision rule φ_t , which is a solution of the model. $p \in \mathbb{R}^{n_p}$ is a parameterization of the model.

This implies a joint distribution $\mathcal{P}_{\epsilon}(m_t, s_t, x_t | F, p)$.

Estimation involves, given empirical distribution $\mathbf{d} = (\mathbf{x}, \mathbf{m}, \mathbf{s})$, computing the likelihood $P(p|F, \mathbf{d})$, or

$$\hat{\theta} = \arg \max_{p \in \mathbb{R}^{n_p}} \mathcal{P}_{\epsilon}(\mathbf{d}|F, p)$$

This can involve running and solving F many times under different parameterizations. This can be expensive.

Sebastian Benthall (Econ-ARK) Open Source Computational Economi PyData NYC 2023 = 20/26

Estimation: Deep Surrogates

Trick: treat parameters p as part of a pseudo-state q, such that $(x_t, p) = q \in Q : \mathbb{R}^{n_s} \times \mathbb{R}^{n_p}$

Now

$$(x_t, p, m_{t+1}, s_{t+1}) = f(m_t, q_t) = F(m_t, s_t|p)$$

Now, given f, sample a large number of samples $(\mathbf{m_t}, \mathbf{q_t})$ and train a *deep surrogate* neural network \hat{f} of the model based on the prediction loss with respect to the sample.

This training can take advantage of *double descent* and parallelized sampling easily because there is no noise!

Chen, Didisheim, and Scheidegger (2023)

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへつ

Double Descent

Source: Wikipedia

Sebastian Benthall (Econ-ARK) Open Source Computational Economi PyData NYC 2023 22/26

Estimation: Deep Surrogates

Then use \hat{f} when searching for optimal $\hat{\theta}$.

The derivative $\frac{\partial q}{\partial p}$ is given by \hat{f} because it's a function of the model weights. So this optimization is easy.

Chen, Didisheim, and Scheidegger (2023)

★ 문 ► ★ 문 ► _ 문

Estimating in step with solving

There is another use of the pseudo-state trick.

If the parameters θ are included in the pseudo-states, and the loss function with respect to the empirical data **d** is encoded into the loss function Ξ , then the solution and estimation can be achieved simultaneously by training a neural network!

・ 同下 ・ ヨト ・ ヨト ・ ヨ

The Future: Modeling language and APIs

- Deep learning made solving and estimating a much larger range of models suddenly feasible.
- However, modeling and methods have been developed ad hoc
- Better standardizing around modeling configurations and APIs is the future!
- As is research on encoding models into NNs.

(4) (2) (4) (3) (4)

Conclusion

Feel free to reach out with any questions. Email: spb413@nyu.edu

Sebastian Benthall (Econ-ARK) Open Source Computational Economi PyData NYC 2023 26/26

(< ≥) < ≥)</p>

- 32